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Interdependent Infrastructures 
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Secure and Economic Operation 

 ISO uses SCUC to determine a secure and economic operation. 

 SCUC determines optimal unit commitment decisions (ON/OFF) and 
generation dispatches (MW) with least cost. 

 SCUC satisfies prevailing system and unit constraints for the base case 
and contingencies. 

 Several ISOs have started implementing SCUC (e.g. New York ISO, PJM 
interconnection, Midwest ISO, and ISO-New England). 
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Smart Grid Today 

 There is growing evidence that the aging electricity grid subjects us 
to more frequent system failures today, which will no longer be 
acceptable. 

 

 Smart grid is a response to economic, security, and environmental 
mandates placed on energy supply and delivery. 
 Accommodates all generation and storage options  

 Enables active participation by consumers  

 Enables new products, services and markets  

 Provides power quality for the range of needs in a digital economy  

 Optimizes asset utilization and operating efficiency  

 Anticipates and responds to system disturbances in a self-healing manner  

 Operates resiliently against physical and cyber attacks, and natural disasters 
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Renewable Energy Integration 

 Integrated Operation Challenge 

Source: California ISO integration of  

renewable resources report , August 2007 
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Renewable Energy Integration 

 Integrated Operation Challenge 

 Transmission Challenge 

Source: 

http://badorbit.wordpress.com 
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Demand Response 

 Most electricity consumers today act as price takers via flat rates, which 

do not reflect truly time-variant electricity supply costs.   

 In smart grid, the electricity industry is in transition toward a demand-

driven business. Demand response will help power markets set efficient 

market prices, mitigate market power, improve economic efficiency, and 

increase system security. 
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Stochastic SCUC - Motivation 

SCUC 

Minimize operation cost under the base case 

Select credible contingencies and  

check security evaluation for each contingency 

Use the Monte Carlo method to simulate  

uncertainty via multiple scenarios and  

check security evaluation for each scenario 

Stochastic SCUC  

Minimize cost under the base case plus  

expected costs introduced by each scenario 

 Uncertainty 

 Random outages of system equipment 

 Load and wind forecast inaccuracy 

 Fuel price and availability 

 Uncertainty Simulation 

 Random outages of system equipment 

 Load and wind forecast inaccuracy 

 Fuel price and availability 

 Rigorous formulation for the hourly commitment of quick-start units in 

scenarios 

 Efficient decomposition method for solving the stochastic SCUC problem, 

which is a NP-hard problem 
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 Outage simulation of a single generator 

 Generate a sample following the uniform distribution [0,1] 

 Compare it with the forced outage rate (FOR) of the generator 

 Monte Carlo method based sampling 

 The advantage of the Monte Carlo method over other techniques (such as 

enumeration method) is more significant as uncertainty dimensions increase. 

 Simulation accuracy depends on the number of samples and the variance of 

sample estimates. Evenly distributed samples can reduce the variance of sample 

estimates, thus the efficiency of the Monte Carlo simulation is improved. 

Scenario Generation 
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Stochastic SCUC Formulation 

  A two-stage stochastic programming 

 First-stage: optimal operation decisions for base case 

 Second-stage: viability and optimality of the first stage decision in each 
scenario 

  Objective: Minimize operation costs for base case +     
                                  expected costs introduced by each scenario 

 First-stage constraints (Base Case) 

 System constraints 

 Unit commitment constraints 

 Demand response constraints 

 Network constraints 

 Second-stage constraints (Scenarios) 

 System constraints 

 Unit commitment constraints 

 Power generation (restricted by the 

base case solution) 

 Hourly unit commitment of quick-start 

generators 

 Fast demand response decisions 

 Network constraints 
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Stochastic Short-term SCUC 
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Visualization of Electricity Grid 
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Visualization of Electricity Grid 

 


