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Electricity Grid Overview
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Interdependent Infrastructures
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Secure and Economic Operation

= ISO uses SCUC to determine a secure and economic operation.

SCUC determines optimal unit commitment decisions (ON/OFF) and
generation dispatches (MW) with least cost.

SCUC satisfies prevailing system and unit constraints for the base case
and contingencies.

Several ISOs have started implementing SCUC (e.g. New York 1SO, PJM
interconnection, Midwest ISO, and ISO-New England).
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Smart Grid Today

= There is growing evidence that the aging electricity grid subjects us
to more frequent system failures today, which will no longer be
acceptable.

= Smart grid is a response to economic, security, and environmental
mandates placed on energy supply and delivery.
Accommodates all generation and storage options
Enables active participation by consumers
Enables new products, services and markets
Provides power quality for the range of needs in a digital economy
Optimizes asset utilization and operating efficiency
Anticipates and responds to system disturbances in a self-healing manner
Operates resiliently against physical and cyber attacks, and natural disasters
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Renewable Energy Integration defyg

= Integrated Operation Challenge
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Renewable Energy Integration

= Integrated Operation Challenge
= Transmission Challenge

Wind Resource Map
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Demand Response

= Most electricity consumers today act as price takers via flat rates, which
do not reflect truly time-variant electricity supply costs.

= In smart grid, the electricity industry is in transition toward a demand-
driven business. Demand response will help power markets set efficient
market prices, mitigate market power, improve economic efficiency, and
Increase system security.
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Stochastic SCUC - Motivation

contingencies and
tion for each contingency

Uncertainty Simulation

= Random outages of system equipment

= Load and wind forecast inaccuracy

= Fuel price and availability
Rigorous formulation for the hourly commitment of quick-start units in
scenarios
Efficient decomposition method for solving the stochastic SCUC problem,
which is a NP-hard problem
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Scenario Generation

= QOutage simulation of a single generator
Generate a sample following the uniform distribution [0,1]
Compare it with the forced outage rate (FOR) of the generator

= Monte Carlo method based sampling

The advantage of the Monte Carlo method over other techniques (such as
enumeration method) is more significant as uncertainty dimensions increase.

Simulation accuracy depends on the number of samples and the variance of
sample estimates. Evenly distributed samples can reduce the variance of sample
estimates, thus the efficiency of the Monte Carlo simulation is improved.
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Stochastic SCUC Formulation defy ¢

m A two-stage stochastic programming
First-stage: optimal operation decisions for base case

Second-stage: viability and optimality of the first stage decision in each
scenario

= Objective: Minimize operation costs for base case +
expected costs introduced by each scenario

First-stage constraints (Base Case) Second-stage constraints (Scenarios)

= System constraints = System constraints
= Unit commitment constraints = Unit commitment constraints
= Demand response constraints Power generation (restricted by the

base case solution)

Hourly unit commitment of quick-start
generators

m Fast demand response decisions
= Network constraints

= Network constraints
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Stochastic SCUC Solution defy
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Stochastic Short-term SCUC
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Stochastic Short-term SCUC
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Visualization of Electricity Grid
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Visualization of Electricity Grid
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